Mission
The Turbomachinery Laboratory of the University of Trento is an active part of the Interdisciplinary Laboratory of Energetic Technologies of Department of Civil, Environmental and Mechanical engineering (DICAM). The mission is to improve accelerate the uptake of renewables and energy efficiency technology, as a means of reducing carbon emissions, increasing energy security, and improving access to sustainable energy for the poor worldwide. The focus of our activities is on wind and water as renewable sources of energy and transmission.
The task is to collaborate with industry to further renewable energy technology and to accelerate their commercialization in the marketplace.
Application area
Wind energy
Wind energy research area was established in 1994 and is a pioneer area in Italy. The activity covers different aspects, from wind assessment to new component development, and wind turbine design and testing. Topic research areas are small wind turbines conceived for low wind sites, wind energy exploitation in cold climates, anti-icing systems, wind turbine concept design and wind turbine testing.
International running collaborations are with the Politechnik of Copenhagen (DTU-MEK) - Denmark, and the Porter School of Tel-Aviv (Israel), while a long cooperation in Italy was established with the Politecnico of Milano.
The cutting edge activity is the recent establishment of a experimental Open Wind Turbines Test Field for community and small wind turbines. The project provides the necessary equipment for analysis and comparison of structural and functional characteristics of mini and micro wind turbines.
Mini hydropower energy
This research area concerns with applications of mini hydro technology. The turbomachinery Lab owns a rig for testing and development of small hydro turbines and reversible pumps (Pump-As-Turbine, PAT) for not conventional applications.
Recently a new research line on the use of variable speed electric generators has been established. This solution allows a better efficiency on variable water flow plants. Currently some experimental outdoor solutions are monitored.
Hydrogen energy vector
The development of a model for an integrated gas-steam turbines operating in Hydrogen fuelled power cycles, the analysis on the principles of safety in hydrogen and in designing secure systems, and the definition of technical guidelines has been based on experience of the research group in this specific area. A novel solution of a Ljungström-type radial-flow cooled turbine, equipped with thermal barriers (TBC) was explored for such an application, investigating stress, cooling and thrust-balancing aspects.
The research group was involved in the pilot project on the construction of a 11 MWe hydrogen-fed gas turbine able to couple high efficiency (fuel utilization) with low nitrogen-oxide emissions at Enel’s coal-fired Fusina Power Plant. The aim of a first demonstrative phase is to verify the correct operation of the gas turbine supplied by pure hydrogen and to acquire know-how of hydrogen combustion, safety aspects and control technologies in gas turbine cycles.
Facilities
CEST – Wind Turbine Test Field – Located in industrial area from 2007, the field is a suited site for the study of wind resources in complex and suburban terrains, and for energetic, functional and structural analysis of mini and micro wind turbines behavior. The turbines currently installed are:
- a 11 kW 2-bladed HAWT, a 1 kW 3-bladed HAWT and a 1kW 3-bladed HAWT;
- 3 wind masts equipped with wind vanes, cup anemometers (at 9 and 18 m), a sonic anemometer at 18 m, as well as temperature, pressure, humidity sensors and rain gages.
Further information is available on www.eolicotrento.ing.unitn.it
LSF1 - Low speed wind tunnel – open flow loop that operates in aspiration mode sucking ambient air, for steady state heat transfer and fluidynamic measurements. Main characteristics are:
- test chamber section 1800x1500 mm, with section velocity 0÷15 m/s,
- drive system 1 x 30 kW centrifugal blower
LSF2 - Low speed wind tunnel – heated open flow loop that operates in aspiration mode sucking ambient air through a quadrant vane nozzle inlet, for steady state heat transfer measurements. Main characteristics are:
- test chamber section 50x50 mm, with section velocity 0÷20 m/s and maximum flow temperature 353K,
- drive system 1 x 22.5 kW centrifugal blower.
MSF - Medium speed wind tunnel - unheated open flow loop that operates in aspiration mode sucking ambient air with the following characteristics:
- test chamber section 300 x 300 mm, with section velocity 0÷50 m/s,
- drive system 2 x 6kW axial fans.
HF1 - Machinery section – closed loop for micro hydraulic pumps and turbines test. Main characteristics are:
- 11.5 kW c.c. motor/generator and c.a./c.c. converter,
- booster pump (H=80 m, Q=120 m3/h, 45 kW),
- pneumatic control valve.
CEST – Wind turbine test field | MSF - Medium speed wind tunnel |
HF1 – Closed loop for micro hydraulic pumps and turbines test | HF2 – Open loop for micro hydraulic turbines test |
People
Director: Lorenzo Battisti - Associate Professor
Ph.D. Students and Research Fellows:
Alessandra Brighenti – Post Doc
Enrico Benini – Research collaborator
Technical staff:
Filippo Degasperi - Technical Assistant
Sergio Dell’Anna - Technical Assistant
Research projects of national relevance (PRIN)
2011-2013 (PRIN2009)
Title: Fluid dynamic analysis of vertical axis wind turbines
Coordinator: Lorenzo Battisti - University of Trento (Italy)
Web site: www.eolicotrento.ing.unitn.it/?page_id=1055
European R&D projects
2010-2014 (FP7-ENERGY)
Title: Future Deep Sea Wind Turbine Technologies
Coordinator: Uwe S. Paulsen - Technical University of Denmark (DTU)
Web site: www.deepwind.eu
Selected publications
2015
Battisti L., Dossena V., Persico G., Dell’Anna S., Benini E., Brighenti A., ”An Experimental Study of the Aerodynamics and Performance of Vertical Axis Wind Turbine in Confined and Non-Confined environment”, ASME Journal of Energy Resources Technology, vol.137, September 2015.
Battisti L., “Wind Turbines in Cold Climates - Icing Impacts and Mitigation Systems”, Springer International Publishing, ISBN 978-3-319-05191-8, 2015.
2013
Ionescu R.D., Ragazzi M., Battisti L., Rada E.C., Ionescu G., "Potential of electricity generation from renewable energy sources in standard domestic houses" in Energy and sustainability IV, Boston: Witt Press, 2013, p. 245-253. - ISBN: 9781845647285. Atti di: ESUS13, Bucharest, 19-21 June 2013.
2012
Trivellato F, Battisti L, Miori G., "The ideal power curve of small wind turbines from field data" in Journal of Wind Engineering and Industrial Aerodynamics, Volumes 107–108:263–273. DOI: 10.1016/j.jweia.2012.04.026.
Battisti L., “Gli impianti motori eolici”, ISBN 978-88-907585-0-8, Ed. Lorenzo Battisti Editore, 2012.
Soraperra G., Cimatti G., Battisti L. ,Zanne L, Brighenti A., “Dynamic Modelling of the Drive Train of Small Vertical Axis Wind Turbines”, EWEA Conference – Copenhagen (DK), 16-19 April 2012.
2011
Battisti L., Zanne L., Dell’Anna S., Dossena V., Paradiso B., Persico D., “Aerodynamic measurements on a vertical axis wind turbine in a large scale wind tunnel”, Journal of Energy Resources Technology, ISSN: 0195-0738, vol.133, 2011.
Paulsen U.S., Pedersen T.F., Madsen H.A., Enevoldsen K., Nielsen P.H., Hattel J., Zanne L., Battisti L., Brighenti A., Lacaze M., Lim V., Heinen J.W., Berthelsen P.A., Carstensen S., de Ridder E., van Bussel G., Tescione G., “Deepwind – An innovative wind turbine concept for off-shore”, EWEA poster session, 14-17 March 2011, Brussels, Belgium.
2010
Molinari M., Pozzi M., Zonta D., Battist, L., “In-field testing of a steel wind turbine tower”, Proceedings of IMAC-XXVIII, p. 229-1-229-10, Jacksonville, 1-4 Feb, 2010.
Battisti L., Zanne L., Dell’Anna S., Dossena V., Paradiso B., Persico D., “Aerodynamic Measurements on a vertical axis wind turbine in a large scale wind tunnel”, Proceedings of Turbo Expo 2010, Glasgow, UK, June 14-18, 2010.
Battisti L., Zanne L., Fedrizzi R., “Un approccio turbomacchinistico all’analisi di rotori di turbine eoliche”, Proceedings del 65° Congresso Nazionale ATI, Associazione Termotecnica Italiana, Domus de Maria, Cagliari, Italia, 13-17 Settembre 2010.
Battisti L., “Analisi critica del fattore di utilizzazione degli impianti motori eolici in Italia”, Proceedings del 65° Congresso Nazionale ATI, Associazione Termotecnica Italiana, Domus de Maria, Cagliari, Italia, 13-17 Settembre 2010.
Battisti L., Miori G., Zanne L., Dell’Anna S., “Effetti dinamici nella costruzione sperimentale della curva di potenza per turbine eoliche di piccola taglia”, Proceedings del 65° Congresso Nazionale ATI, Associazione Termotecnica Italiana, Domus de Maria, Cagliari, Italia, 13-17 Settembre 2010.
2009
Battisti L., Brighenti A., Ch. 13 Turbine materials in “Offshore Wind Power”, London: Multi-Science publishing, ISBN: 0906522633, 2009.
Battisti L., Brighenti A., Zanne L. “Analisi dell’effetto della scelta dell’architettura palare sulle prestazioni di turbine eoliche ad asse verticale”, 64° Congresso Nazionale ATI, Associazione Termotecnica Italiana, L’Acquila, Italia, 8-11 settembre, 2009.
Battisti L., Miori G., Zanne L., Dell’Anna S., “Effetto dei fattori che influenzano la costruzione della curva di potenza di turbine eoliche”, 64° Congresso Nazionale ATI, Associazione Termotecnica Italiana, L’Acquila, Italia, 8-11 settembre, 2009.
2007
Battisti L., Fedrizzi R. “2D Numerical Simulation of a Wind Turbine De-Icing System Using Cycled Heating”, Wind Engineering, Vol. 31, NO. 1, 2007.
Battisti L., Soraperra G., “Analysis and application of pre-design methods for HAWT rotors”, EWEC conference, Milan, Italy, 7-10 May, 2007.
2006
Battisti L., Giovannelli A. “Wind Turbine Installations for high Elevations”, 8th Biennial ASME Conference on Engineering Systems Design and Analysis, Torino, 4-7 June, 2006.
Battisti L., Baggio P., Fedrizzi R. “Warm-Air Intermittent De-Icing System for Wind Turbines”, Wind Engineering, VOLUME 30, NO. 5, 2006.
Battisti L., Fedrizzi R., Brighenti A., Laakso T. “Sea ice and icing risk for offshore wind turbines”, Owemes 2006, 20-22 April, Citavecchia, Italy.
Battisti L., Brighenti A., Giacomoni, A., “Fattibilità economica di installazioni eoliche con mini turbine”, Wind Energy – Elettricità dal vento, N. 2, 2006.
2005
Battisti L., Fedrizzi R., Dal Savio S., Giovannelli A., “Influence of wind turbine’s type and size on anti-icing thermal power requirement”, Proceedings of EUROMECH 2005 Wind Energy Colloquium, Oldenburd, Germany, October 4-7, 2005.
Battisti L., Fedrizzi R., Rialti M., Dal Savio S., “A model for the design of hot-air based wind turbine ice prevention system”, WREC05, Aberdeen, UK, May 22-27, 2005.
Battisti L., Fedrizzi R., Soraperra G., “Analysis of the finned stator thermal effectiveness of the Leitwind MW class wind turbine”, WREC05, Aberdeen, UK, May 22-27, 2005.
Battisti L., Baggio P., Fedrizzi R., “Numerical simulation of a wind turbine warm-air intermittent de-icing system”, 4th International Conference on Computational Heat and Mass Transfer, Proceedings of 4th CCHMT, Paris-Cachan, FRANCE, May 17–20, 2005.
Battisti L., Brighenti A., Dal Savio S., Dell’Anna S., “Evaluation of anti-icing energy and power requirement for wind turbine rotors in cold climates”, Proceedings of the VII BOREAS Conference, Saarisalka, Finland, March 7-8, 2005.
Battisti L., Hansen M.O.L., Soraperra G., “Aeroelastic simulations of an iced MW-Class wind turbine rotor”, Proceedings of the VII BOREAS Conference, Saarisalka, Finland, March 7-8, 2005.
Battisti L., Fedrizzi R., Rialti M., Dell’Anna S., “Ice risk assessment for wind turbine rotors equipped with de-icing systems”, Proceedings of the VII BOREAS Conference, Saarisalka, Finland, March 7-8, 2005.
2003
Battisti L., Baggio P., Soraperra G., “A model for optimum design of hydrogen based wind energy production”, HYPOTHESIS V , HYdrogen – POwer THeoretical and Engineering Solutions International Symposium, Porto Conte, Italy, September 7-10, 2003.
Battisti L., Dal Savio S., “Sistema antighiaccio per pale di turbine eoliche. Parte I: valutazione del fabbisogno energetico”, 58° Congresso ATI, Padova, Italy, 8-12 September 2003.
Battisti L., Soraperra G., “Sistema antighiaccio per pale di turbine eoliche. Parte II: sistemi a circolazione di aria”, 58° Congresso ATI, Padova, Italy, 8-12 September 2003.
Selected PhD theses
Zanne, L. Fluid dynamic modelling of wind turbine. University of Trento, Italy, 2010.
Brighenti, A. Wind turbine installations in cold climates. University of Trento, Italy, 2006.
Soraperra, G. Analysis of aerodynamic and aeroelastic behavior of a wind turbine rotor during icing. University of Trento, Italy, 2005.
Castellani, I. Studio di un profilo cavitante in un ugello venturi. University of Trento, Italy, 2005.
Fedrizzi, R. Theoretical and experimental investigation of the parameters affecting the power production of axial gas turbine stages. University of Trento, Italy, 2003.
Mancuso, P. Cavitation erosion in metallic materials. University of Trento, Italy, 1998.
Contacts
Prof. Ing. Lorenzo Battisti
Phone: +39 0461 282515
lorenzo.battisti [at] unitn.it